M&V Strategies for a Cogen Plant at the GSA White Oak

Presented at the Federal M&V Summit Washington D.C

April 22, 2004 By Mustafa Abbas

PHASE 1 & 2

Located at Silver Spring, MD

Approx. Cost: \$25M (Cogen Plant and

Distribution)

Approx. Annual Savings: \$1.04M in Energy

\$1.8M in O&M

Building-Side Savings: \$0.4M

Over 20 Years: >\$100M in Total Savings

Energy Conservation Measures (ECM)

- Photovoltaic System
- Phase 1 & 2 Cogeneration Plant
- Hydronic Distribution
- Site Electrical Distribution

- Lighting Upgrades
- Glazing Upgrades
- AHU Redesign
- ChW Pump VFDs
- HW Pump VFDs
- Economizer
- Demand Control Ventilation
- Night Setback

COGEN PLANT (Phase 1&2)

Wartsile Engine: 6MW

Standby Diesel: 2MW

Absorption Chiller: <u>1 @ 1,130</u> Tons

■ Electric Chiller: <u>2 @ 1,980</u> Tons

Hot Water Boiler: 3 @ 10,000 MBtu/h

Heat Recovery Boiler: 1 @ 20,000 MBtu/h

BASELINE

Basesd On;

- 35% Design Drawing for Office Building
- 100% Design Drawing for Laboratory
- 50% Design Drawing for Central Plant

PLANT BASELINE

- No Cogen
- 25kW Photovoltaic Array
- 3 1,130 Ton Electric Chillers
- 3 CV 100hp CHWPs
- 3 CV 125hp CWPs
- 3 CV 100hp CT Fans
- 12°F CHW DT; 12°F CW DT

EXISTING PLANT (Phase 1 & 2)

- 6 MW Cogen + 2MW Backup
- 28kW Photovoltaic Array
- 1 1,130 Ton Lead Absorption Chiller
- 2 1,980 Ton Electric Chillers
- 1 250hp CHWP with VFD
- 3 150hp CWPs with VFD
- 3 75hp CT Fans with VFD
- 20°F CHW DT; 17°F CW DT

M&V APPROACH

- 1. M&V for Chillers
- 2. M&V For Engine

M&V For Chillers

Point

Engineering Units

Interval

Chiller Command	On/Off	15 min.
Absorption Chiller H/W consmp.	GPM	15 min.
Absorption Chiller H/W Supply Temp.	٥F	15 min.
Absorption Chiller H/W Return Temp.	٥F	15 min.
Chiller Power	kW	15 min.
Chiller Flow (Electrical Chiller)	GPM	15 min.
Chiller Flow (Absorption Chiller)	GPM	15 min.
Chilled Water Supply Temp.	٥F	15 min.
Chilled Water Return Temp.	٥F	15 min.

M&V For Chillers

Calculate kW/Ton for Electric Chillers

kW/Ton = (Chiller kW x $(12,000)/(500 \times GPM \times \Delta T)$.

Calculate COP for Absorption Chiller

 $COP = [500 \times HW GPM \times \Delta T] / (500 \times CHW GPM \times \Delta T]$

M&V For Chillers

- 1. Campus Thermal Load as Agreed-to From Simulation
- 2. Compare kW/Ton Profiles of Actual Performance vs Manufacturer's Specs.
- 3. A) If within agreed-to band, then Savings as CalculatedB) If > band, then Savings Recalculated by substitutingActual Performance Profile with Agreed-to Load profile

M&V For Cogen Engine

Point

Engineering Units

Interval

Generated electricity

kWh

15 min.

N. G. consumption by the engines

MMBtu

15 min. .

M&V For Cogen Engine

- Calculate Heat Rate for the Engine
- Heat rate (Btu/kWh) is an indication of the performance of the engines. It is the ratio of the heat added to the cycle in Btu/h (LHV), to generation, in kWh
- Heat Rate = Gas Consumption [Btu(LHV)] / [(kWh Output at the shaft).

M&V For Cogen Engine

- 1. Campus kW Load as Agreed-to From Simulation
- 2. Compare Heat Rate Profiles of Actual Performance vs Manufacturer's Specs.
- 3. A) If within agreed-to band, then Savings as CalculatedB) If > band, then Savings Recalculated by substitutingActual Performance Profile with Agreed-to Load profile

BASELINE MODELING

Days	Hour	OADB (deg F)	Average Electric (kW)	Average Heating (btuh)	Average Cooling (ton)
			a = TRACE data	b = TRACE data	c = TRACE data
31	1	31	1457	15,264,900	250
	2	29	1457	15,771,443	237
	3	28	1457	16,225,414	222

BASELINE MODELING

Electricity from Grid (kW)	Chiller Operation Boiler Operation (b							
d = a + g + h + l	Chiller #4 (ton hr)	- Chiller #3 (ton- hr)	Chiller #2 (ton-hr)	Chiller #1 (ton-hr)	f = b* (1 + %DA steam) + loss			
1831	273	0	0	0	17,070,690			
1819	260	0	0	0	17,629,861			
1806	245	0	0	0	18,130,998			

BASELINE MODELING

													Boiler Fuel	
							on-pk all						Consumption	
		kW	total kWh	On-pk	Mid-pk	Off-pk	kwh	n-pk \$/kWl	Mid-pk \$/kWł	off	\$/KW	Elec\$	(mmBTU)	Fuel \$
,	Jan	4,217	1,833,527	741,909	627,722	463,896	0.02375	0.03265	0.02708	0.01438	4.069	\$108,872	17,850	\$71,399
	Feb	4,204	1,656,455	669,329	567,259	419,867	0.02375	0.03265	0.02708	0.01438	4.069	\$99,974	16,406	\$65,626

Days	Hour	OADB (deg F)	Facility Electric (kW)	Heating w/ Pipe Losses (btuh)	Cooling w/ Pipe Losses (ton-hr)
			a = from TRACE runs	b = y + max(col. y)*1%	c = z + max(z) * 1%
31	1	31	1788	3,664,477	16
	2	29	1788	3,889,363	16
	3	28	1789	4,088,749	16

Total Electric Need (kW)	No. of Engines Required	Engine Load (%)	Net Elec output (kW)	Grid Electricity (kW)
d = a + o + p + q	e = roundup (d/engine capacity)	f = d / (e * engine capacity)	g = min(d, total # of engines installed * engine capacity)	h = d - g
2,015	1	34%	2,015	0
2,014	1	34%	2,014	0
2,013	1	34%	2,013	0

Fuel (HHV) input kbtu/hr	HR Boiler From Exhaust (kBTUh)	HT jacket (kBTUh)	LO jacket (kBTUh)	LT jacket (kBTUh)
i = f * slope1 + constant1 (from "Engine Performance" sheet)	j = f * slope2 + constant2 (from "HRSG Performance" sheet)	k = f * slope3 + constant3 (from "Engine Performance" sheet)	k1 = f * slope4 + constant1 (from "Engine Performance" sheet)	k2 = f * slope5 + constant1 (from "Engine Performance" sheet)
21,447	3,544	4,401	1,570	1,338
21,441	3,544	4,401	1,570	1,338
21,436	3,543	4,400	1,570	1,338

Boiler Operation (BTUh)	Boiler Natural Gas (mmBTUh)	(n4) Chiller #4 (ton- hr)	(n3) Chiller #3 (ton-hr)
I = b - j*1000 - k*1000- k1*1000	m = I/10^6/boiler eff	n4	n3
0	0	16	0
0	0	16	0
0	0	16	0

Month	Days/month	Peak Demand	On-Peak Daily Consumption	On-Peak Daily Consumption	Mid-Peak Daily Consumption	Off-Peak Daily Consumption	Total Daily Consumption
		(kW)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
Jan	31	0	0	0	0	0	0
Feb	28	0	0	0	0	0	0
Mar	31	0	0	0	0	0	0

	Monthly Peak Demand	Monthly On- Peak Consumption	Monthly Mid- Peak Consumption	Monthly Off- Peak Consumption	Total Monthly Consumption	•	Monthly Fuel Consumption
ſ	(kW)	(kWh)	(kWh)	(kWh)	(kWh)	(mmBTU)	(mmBTU)
Ī	0	0	0	0	0	677	20,979
	0	0	0	0	0	685	19,174
	0	0	0	0	0	651	20,181

Load	Steam Productio
50%	4,613
75%	4,856
80%	5,323
90%	6,082
100%	6,913

POST MODELING

Solutions

CONCLUSION

- Plant and the Buildings did not exist
- Base loads are simulated based on designs drawings
- Post loads are simulated based on value engineering modifications to the original design
- Savings are based on efficiency guarantee not on loads
 - SES does not have control over buildings loads
 - SES has control over how system performs

